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A general approach for detecting expressed
mutations in AML cells using single cell
RNA-sequencing
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David Y. Chen4, Catrina C. Fronick2, Robert S. Fulton2, Deanna M. Church 5 & Timothy J. Ley1,2,6

Virtually all tumors are genetically heterogeneous, containing mutationally-defined subclonal

cell populations that often have distinct phenotypes. Single-cell RNA-sequencing has

revealed that a variety of tumors are also transcriptionally heterogeneous, but the relation-

ship between expression heterogeneity and subclonal architecture is unclear. Here, we

address this question in the context of Acute Myeloid Leukemia (AML) by integrating whole

genome sequencing with single-cell RNA-sequencing (using the 10x Genomics Chromium

Single Cell 5’ Gene Expression workflow). Applying this approach to five cryopreserved AML

samples, we identify hundreds to thousands of cells containing tumor-specific mutations in

each case, and use the results to distinguish AML cells (including normal-karyotype AML

cells) from normal cells, identify expression signatures associated with subclonal mutations,

and find cell surface markers that could be used to purify subclones for further study. This

integrative approach for connecting genotype to phenotype is broadly applicable to any

sample that is phenotypically and genetically heterogeneous.
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Connecting genotype to phenotype at the single-cell level is
widely appreciated as a central challenge in the analysis
and interpretation of scRNA-seq data, with applications

ranging from cell lineage tracing1 and eQTL discovery2, to the
analysis of subclonal architecture in tumors3–14. In cancer,
mutationally distinct subclones can differ with respect to key
clinical properties such as drug sensitivity and growth rate, and
this phenotypic diversity may contribute to drug resistance and
tumor evolution15. However, it is currently difficult to purify
individual subclones for use in downstream studies that address
the biological basis of these differences. Meanwhile, a growing
body of work has demonstrated that tumors are also tran-
scriptionally heterogeneous, but it has been challenging to relate
this epigenetic heterogeneity to genetic heterogeneity in indivi-
dual tumors3–14,16. We sought to address this challenge by
detecting cells that express somatic single nucleotide variants
(SNVs) in scRNA-seq data.

Detecting genetic variants in scRNA-seq reads is difficult due
to the low transcript abundance, allelic dropout, and incomplete
transcript coverage inherent to this platform. Despite these
challenges, previous studies of intratumoral heterogeneity
have demonstrated that single-cell copy number alterations
(CNAs) can be robustly detected in full-length cDNAs, com-
monly generated using the Fluidigm C1/SMART-seq platform, in
dozens3–5,7 to hundreds6,8,10,11,14,17,18 of cells per tumor, and
specialized tools have been developed for this purpose12,19.
Others have built upon plate-based scRNA-seq technologies to
detect specific mutations with variable sensitivity20,21.

The ability to detect CNAs in single cells has advanced the
study of cancers where structural alterations and/or aneuploidy
are common3–10,13,14,18. However, CNAs are rare in some tumor
types, such as AML22,23. Moreover, CNAs rarely capture the
complete subclonal complexity of any tumor, and are often
subclonal progression-associated events24. The ability to detect
multiple, arbitrary SNVs in scRNA-seq reads is an ideal attribute
for any generally-applicable approach to the study of intratu-
moral heterogeneity. Although previous studies have established
that some SNVs can be identified from full-length cDNAs, low
numbers of identified mutant cells made downstream analyses
difficult4,5,14.

In working with the 10x Genomics Chromium Single Cell 3′
(v2) and 5′ (v1) Gene Expression workflows, we observed
sequence coverage far from the 3′ and 5′ ends of genes (respec-
tively). This was unexpected, given the end-bias of the Chromium
library design, and raised the possibility that the resulting scRNA-
seq data could be used for variant detection. Because this platform
can sample up to 10,000 cells per library, we hypothesized that
even sparse transcript coverage – which would permit the iden-
tification of mutations in a fraction of cells – might allow us to
combine variant detection with high-throughput transcriptome
characterization. Here, we evaluate the utility of 10x scRNA-seq
data for somatic variant detection in cryopreserved AML bone
marrow samples. Because genome sequencing of paired tumor/
normal samples is the gold standard for de novo discovery of
somatic mutations and inference of subclonal architecture, we
first use “enhanced” whole-genome sequencing (eWGS) of paired
tumor/normal samples to discover somatic mutations, and then
focus on detecting those mutations in the scRNA-seq data.

Results
eWGS and bulk RNA-sequencing. Four cases of de novo AML
and one of secondary AML were selected for study (clinical
details in https://github.com/genome/scrna_mutations). eWGS
was used in conjunction with well-established variant detection
pipelines to generate a set of high-confidence mutation calls for

each case, and bulk RNA-sequencing was used to determine
which mutations were expressed in each tumor sample
(Methods)25. eWGS (Fig. 1a) revealed that these cases were
genetically representative of AML, containing on average 26
mutations within coding regions, with many in well-established
driver genes (e.g. DNMT3A, FLT3, NPM1, TP53, NRAS, IDH1,
CEBPA, etc.). To define the clonal architecture of each tumor, the
SciClone algorithm26 was used to cluster mutations and infer
subclones. At least one subclone was identified in every case
(Table 1, Supplementary Data 1)23. Bulk RNA-sequencing
showed that on average, fewer than half of the mutations detec-
ted by eWGS were expressed (Table 1).

Single-cell transcript coverage and representation. We first
compared genome-wide transcript coverage obtained from the 5′
(v1) and 3′ (v2) 10x Genomics Chromium Single Cell Gene
Expression workflows. For one case, UPN 508084, we generated
two scRNA-seq libraries with each workflow, and sequenced
them to high depth, targeting 200,000 reads/cell. Transcriptome-
wide coverage for each data set was assessed using 20,090 genes,
each having one annotated isoform (Methods). Both workflows
yielded consistent low-level coverage at least 10 kbp from the 5′
and 3′ ends of the average transcript (Fig. 1b). However, the 5′ kit
yielded slightly higher transcript-wide coverage in distal regions
of transcripts. For the average gene assayed using that kit, at least
2.5% of the unique sequenced transcripts mapped to any given
base up to 10 kbp away from the 5′ transcription start site of the
gene. Coverage metrics for 200 cancer-relevant genes are sum-
marized in Supplementary Data 2 and provided at nucleotide
resolution at https://github.com/genome/scrna_mutations. Sub-
sequent sequencing and analyses were performed using only the
5′ workflow application.

We then asked whether bulk and single-cell RNA-seq data
capture the same transcript structure for the mutated genes in this
study. Using one canonical isoform for each gene, we compared
coverage in the single-cell data (unique barcode/UMI pairs at
each position) to that in the bulk RNA-seq data (quantified using
bamCoverage and 1 bp bins), and visualized it using the UCSC
Genome Browser (Methods). The results demonstrate that, for
each gene studied, bulk- and single-cell data identified the same
set of transcripts (Fig. 1c). Coverage plots for all mutated genes in
this study are provided at https://github.com/genome/
scrna_mutations.

Mutation identification in single cells. We next sought to
identify cells containing any of the somatic variants discovered
using eWGS. For each cell and each variant position in the eWGS
data, unique wild-type, and mutant reads were counted using
cb_sniffer, a tool that extends the PySam library to do barcode-
aware pileups (see Methods: https://github.com/genome/
cb_sniffer). In most high-throughput scRNA-seq datasets, the
median gene is represented in the median cell by one transcript
read. Consistent with this, most SNV locations were covered by a
single read in most cells (although SNVs in several highly
expressed, high-coverage genes (e.g. U2AF1, NPM1, SRSF2, and
NRAS) were more likely to have multiple reads per cell) (Sup-
plementary Fig. 1a). For a heterozygous mutation, therefore, there
is a 50% chance that the observed transcript is mutant, and a 50%
chance that it is wild-type, leading to the phenomenon known as
allelic dropout. This has two main consequences: first, it is
impossible to conclude that a cell is wild-type; secondly, the
sensitivity of mutation detection is reduced by a factor of two.
Therefore, barring sequencing errors, one can in principle classify
a cell’s genotype as “mutant” if it contains one or more mutant
transcripts, and “unknown” if it does not. We measured the
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frequency of false positives originating from sequencing errors by
examining the positions of known somatic mutations in samples
that did not harbor those mutations. The false-positive rate (the
rate at which wild-type UMIs are called mutant in the control
samples) was site-specific, and had a maximum rate of only 0.39%
(Supplementary Data 3). We also searched for these variants in
8057 bone marrow cells from four healthy donors, and found no
false positives.

We therefore labeled a cell “mutant” if it contained at least one
variant-containing read, and “unknown” if only wild-type reads
or no reads were detected. We found an average of 49 mutant
cells per variant (range: 1–3944), and 3732 mutant cells (22% of
the total cells) per sample, but this varied widely among samples
(range: 396–8200, or 1.8–52%), depending on the mutations
present in each (Table 1). Most mutant cells contained one
detected mutation, with one read mapping to the variant position
(Supplementary Fig. 1). Founding clone mutations, subclonal
mutations, and putative driver mutations were detectable in each
case, and these included SNVs, insertions and deletions (indels,
including FLT3-ITD and NPMc), and one gene fusion (NUP98-
NSD1) (Table 1, Supplementary Data 1). Although the vast
majority of mutant cells contained only one mutation (88–98%,

depending on the sample), a small fraction of cells in each case
contained multiple mutations, particularly when a founding clone
mutation was readily detectable (Table 2). Specifically, two
mutations were found in 1.6–12% of the mutant cells in a sample;
three mutations were found in 0.21–0.29% of mutant cells; and
four mutations were found in one cell (0.012%) in sample 721214.
The observed mutation combinations were consistent with the
known subclonal architecture (although the mutation data was
generally not dense enough for accurate de novo subclonal
inference). For example, case 548327 contained an NPM1W288fs

mutation in the founding clone, and several hundred cells
contained both this mutation and one subclonal mutation. Case
721214 is composed of three subclones sequentially nested within
the founding clone. One cell was found to have one mutation
from each (sub)clone.

Mutation detection in single cells was compared to that in bulk
RNA-seq and eWGS data using a read-based metric, “single-cell
Variant Allele Frequency” (scVAF), which enabled us to compare
VAFs across data types, and two cell-based metrics, “Mutant Cell
Fraction” (MCF) and “Mutant Cell Detection Rate” (MCDR),
which allowed us to measure and compare the sensitivity of
mutant cell identification (Methods). In terms of mutant reads,
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Fig. 1Workflow, coverage, and performance metrics for variant detection in single cells. a Cryopreserved bone marrow cells from AML patients underwent
eWGS, bulk RNA-seq, and scRNA-seq. Somatic mutations were discovered using eWGS data, identified in individual cells using scRNA-seq data, and
interpreted in the context of expression heterogeneity. b Fraction of unique transcripts (molecules) whose reads map to any given position up to 10 kbp
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the sensitivity of mutation detection was comparable in single cell
and bulk RNA-seq data: on average, a slightly higher fraction of
known mutations was detected in the scRNA-seq data, but not
necessarily in a large number of cells (Table 1). We then
examined the relationship between bulk VAF (either eWGS or
bulk RNA-seq) and single-cell VAF (scVAF) and detection
sensitivity (MCF): for expressed mutations that were identifiable
in bulk and single-cell RNA-seq data, single-cell MCFs and
scVAFs were more highly correlated with eWGS VAFs (r= 0.69
and 0.68, respectively) than were bulk RNA VAFs (r= 0.52;
Table 1). scVAFs were positively correlated with bulk RNA-seq
VAFs (r= 0.34; Fig. 1d, Supplementary Fig. 1c). Although
mutation-detection in scRNA-seq is sensitive from a read-based
perspective, sensitivity from a cell-based perspective is very low
and mutation-specific; we identified only a small fraction of the
cells that would be expected to contain mutations based on eWGS
VAFs (MCDR, Fig. 1d). This fraction depends on multiple
variables, including bulk RNA VAF, distance from the 5′ end of
the transcript, and single-cell gene expression (Fig. 1d, Supple-
mentary Fig. 1c, d).

The ability to detect mutations in scRNA-seq data therefore
depends on a number of variables, including VAF, expression
level of the mutated gene, position of the mutation in the
transcript, sequencing depth, fraction of tumor cells in the
sample, and number of cells sequenced. The probability of finding
at least one cell containing a particular heterozygous mutation m
is approximately:

P mð Þ ¼ na f 1� 1� ctð Þr½ � þ 1� fð Þeð Þ � nafrct þ na 1� fð Þe
ð1Þ

Where f is twice the variant allele frequency of the mutation in
the eWGS data, t is the relative expression level of the gene (e.g. in
counts per million), r is the average number of UMIs per mutant
cell, c is the fraction of UMIs that have coverage at the mutant
position, e is the site-specific false-positive rate (frequency with
which a wild-type cell is called mutant), a is the fraction of cells in
the sample that are tumor cells, and n is the total number of cells
sequenced.

Using SNVs to distinguish between tumor and normal cells.
Single-cell CNA detection is often used to identify tumor cells in
samples that contain a mixture of tumor and normal cells, but
sensitivity is limited by the fact that CNAs are frequently sub-
clonal, even in the (non-AML) tumors that contain them24.
Therefore, we investigated the utility of single-cell SNV detection
for this purpose. A straightforward approach would involve
selecting only those cells that contain a mutation; we detected an
average of 3732 mutant cells per sample (Table 1). Despite the
wide range (396–8200), this is substantially more than the total
number of cells/sample analyzed in previous single-cell mutation-
detection studies3–10,13,14. However, we retained the additional
cells in each sample (which contained valuable expression
information), and instead used single-cell SNVs as markers for
tumor vs. wild-type cell clusters.

We first used principal component analysis to summarize the
expression heterogeneity in each case (Methods) to better
understand the composition of each sample. As expected, this
revealed complex relationships among clusters (such as partially
overlapping expression signatures), and multiple sources of
heterogeneity in all samples, including variable expression of
known hematopoietic cell-type markers (e.g. CD3D (T-cells),
CD79A, or CD19 (B-cells), and HBA1 (erythrocytes)), cell cycle
genes (e.g. TUBA1B, TOP2A), markers of myeloid lineage (e.g.
AZU1, ELANE, MPO, PRTN3), mitochondrial genes, and
ribosomal genes (Fig. 2a, b; Supplementary Fig. 2–5, Supplemen-
tary Data 4). This indicated that the distribution of cell types is a
major source of expression heterogeneity, and varies among
samples, as expected.

To investigate sample composition in a more unsupervised
manner, we identified the nearest hematopoietic lineage of each
cell by matching each cell’s expression profile to the most similar
lineage-specific expression profile in the DMAP database27

(Methods, Figs. 3c and 4). The inferred sample composition
varied widely among subjects, particularly with respect to the
fraction of lineage-defined cells (e.g. cells resembling myelomo-
nocytic cells, T-cells, B-cells, and erythrocytes). All five samples
contained clusters of immature cells, including cells resembling
hematopoietic stem cells (HSCs), common myeloid progenitors
(CMPs), and megakaryocyte-erythroid progenitors (MEPs),
which could represent either immature non-malignant cells or
AML cells.

To clarify the identity of these clusters, we combined single-cell
mutation detection with expression-based clustering and lineage
inference. Using the bone marrow sample from 809653 (which
contained many non-AML cells, based on morphology and flow
cytometry) we overlaid mutation data on the t-SNE projections
by highlighting mutant cells (Fig. 3e–g). A highly expressed
germline SNP in the BAG1 gene served as a positive control,
marking SNP-containing cells in all expression clusters (Fig. 3h).
By scRNA-seq, we detected cells expressing mutations in 8 genes,
including TP53, NRAS, and CEBPA (Table 1, Supplementary
Data 1). Several clusters were significantly enriched (p ≤ 0.05,
one-sided Fisher exact test) for mutant cells; other cells in these
clusters presumably contained undetected mutations in these
genes (Fig. 3b–g). Two of these clusters were composed of cells
that had stem/progenitor expression signatures (HSCs and
MEPs). The other two were composed of cells expressing
erythrocyte or monocyte markers; in terms of gene expression,
these clusters are distinct from normal cell clusters, but they could
not have been labeled as AML-derived using expression
data alone.

This was the only case with multiple CNAs, allowing us to
benchmark SNV-based cell classification against the better-
established CNA-based methods. CONICSmat19 was used to
identify cells containing the CNAs discovered by eWGS, and high
concordance was observed with SNV/expression-based classifica-
tion of AML cells: 95.5% of cells classified as AML by copy
number were also classified as AML by SNV and expression
signature (Fig. 2c). Conversely, 94.9% of cells classified as AML
by SNVs and expression were confirmed by CNA analysis. This

Table 2 Frequency of cells containing multiple mutations in each case

Sample 508084 548327 721214 782328 809653

Total mutant cells 669 3571 4975 3354 361
1 mutation (%) 658 (98) 3280 (92) 4694 (94) 3176 (95) 354 (98)
2 mutations (%) 11 (1.6) 460 (13) 268 (5.4) 171 (5.1) 7 (1.9)
3 mutations (%) 0 11 (0.31) 12 (0.24) 7 (0.21) 0
4 mutations (%) 0 0 1 (0.02) 0 0
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demonstrated two key points: first, SNV-based classification of
AML clusters can perform comparably to CNA-based methods,
and second, cells in mutation-enriched clusters are also likely to
be AML cells, even if they contain no detectable mutation.

In the other 4 cases, somatic mutations were also concentrated
in specific cell clusters, suggesting that they represented AML
cells (Fig. 4). This approach to AML cell identification, which
assumes that all cells in mutation-enriched clusters are likely to be
AML cells, may miss small clusters of mutant cells, and rare AML
cells that co-cluster with cells of different lineages; an alternative
approach is to analyze only (and all) cells with identified
mutations (below). Overall, combining expression and mutation
data delineated clusters of AML cells more comprehensively than
either method alone, and allowed us to identify abnormally-
differentiated AML cells (“lineage infidelity”28).

Evaluating tumor differentiation state. By combining lineage
inference with single-cell mutation identification, we estimated
the extent of differentiation of each tumor. Our conclusions were
supported by flow cytometry and morphology, but provided more
insight into the differentiation state of AML cells in individual
samples (Figs. 3 and 4). In two cases (809653 and 782328), a
considerable fraction of the mutant cells had expression sig-
natures consistent with differentiated cells: erythrocytes and
monocytes in 809653 (Fig. 3c), and monocytes and NK-T cells in
782328 (Fig. 4d). Likewise, case 548327 contained mutant cells
that co-clustered with wild-type B- and T-cells, again suggesting
that some AML cells display lineage infidelity (Fig. 4b). Thus, this
integrative genomic approach validates the concept that AML

cells can have a variety of abnormal expression signatures, cor-
responding to different lineages and states of differentiation.

Expression signatures of mutation-containing cells. In the
approach described above, we treated mutation-containing cells
as markers for entire clusters of putative AML cells. However, the
ability to map mutations in many cells (3732 mutant cells/sample
on average) facilitates more conservative, direct analyses of
intratumoral expression heterogeneity, using only the cells that
express a confirmed somatic mutation. For each sample, there-
fore, we analyzed the mutationally defined AML cells separately
(Methods, Supplementary Figs. 6 and 7). As expected, all samples
showed intercellular heterogeneity in the expression of cell cycle
genes (as expected) and genes that function in the immune sys-
tem, especially the MHC Class II genes and/or CD74. All but one
case (782328) showed intercellular variability in expression of
TP53-interacting genes29. Three cases (508084, 548327, and
721214) showed intercellular heterogeneity in genes that interact
with the vascular cell adhesion gene VCAM1, and three (721214,
782328, and 809653) showed heterogeneous expression of mye-
loid differentiation genes. There were also case-specific sig-
natures, such as “response to reactive oxygen species” in
72121429. As discussed further below, a GATA2R361C expression
signature is evident in cells expressing this mutation. Thus, the
reduced, mutant- only data set is sufficient to capture much of the
expression heterogeneity observed in the total sample.

Mutation-associated expression signatures. We next investi-
gated the extent to which mutational heterogeneity was associated
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with transcriptional heterogeneity in each case. A subclonal
mutation that drives an expression signature should be restricted
in expression space. In contrast, a founding or subclonal mutation
not associated with an expression signature should be present
throughout expression space. Furthermore, this should not
depend on restricted expression of the mutant gene. To this end,
we highlighted mutant cells on the t-SNE projection of each
sample, and identified mutations that are nonuniformly dis-
tributed, even after controlling for that gene’s expression
(Figs. 3e–g and 4, Supplementary Fig. 8). We performed two
versions of this analysis: a “whole-sample” analysis using all cells,
and a “mutant-cell” analysis using only mutation-containing cells.
The whole-sample analysis capitalized on the high throughput of
this platform by incorporating expression information from all
~20,000 cells per sample, thereby improving our ability to discern
distinct expression signatures. On the other hand, the limitations
of genotype assignment imposed by low coverage and allelic
dropout required that we compare a relatively small number of
mutant cells to a much larger number of cells of unknown gen-
otype (representing a mixture of mutant and wild-type cells).
Therefore, instead of performing a straightforward comparison
between mutant and wild-type cells, we looked for evidence that
the mutant cells were nonuniformly distributed among the
“unknown” cells: when defining expression signatures, as
described further below, we searched for genes whose expression
was correlated with the density of mutant cells.

The results of the whole-sample analysis indicated that the
relationship between expression heterogeneity and mutational
heterogeneity is case- and mutation-dependent. Two cases,
721214 and 508084, contained subclonal mutations with nonuni-
form distributions (Fig. 4a, c). Based on eWGS, 721214 contained
a subclone defined by GATA2R361C. In the scRNA-seq data, cells
expressing GATA2R361C were largely restricted to the same space
on one side of the t-SNE projection, suggesting that AML cells
containing this mutation have a unique expression signature
(Fig. 4a). Two cases (809653 (Fig. 3f–g) and 782328 (Fig. 4d))
exhibited complex mutation-associated expression profiles, and a
third, 548327 (Fig. 4b), showed expression heterogeneity in the
absence of discernable genetic heterogeneity. The GATA2R361C

gradient in 721214 was of particular interest, because GATA2
encodes a transcription factor that is a key regulator of
hematopoiesis, and is recurrently mutated in AML23,30. We
therefore sought to characterize the associated expression
signature.

As noted above, scRNA-seq data allows us to distinguish
between mutant cells and cells of unknown genotype; we cannot
conclusively label a cell as “wild-type.” To address this limitation
while incorporating expression information from cells of
unknown genotype, we employed a regression-based method
that identifies genes whose expression is correlated with the
density of mutant cells (Methods), for a given mutation or set of
subclonal mutations. This approach makes use of expression
clusters to smooth the expression and density data, but does
not depend on the exact clustering, and does not require us to
identify cluster-specific gene expression. It also permitted us to
control for potential covariates, such as the expression of GATA2,
which was slightly correlated with the mutation density gradient.
We applied this method to the full data set in two ways: first,
by searching for genes whose expression was correlated with
any mutation in the GATA2R361C subclone (Fig. 5a), and second,
for genes associated with GATA2R361C per se. Each analysis
yielded several hundred genes whose expression was positively
correlated with GATA2R361C density (FDR-adjusted p-value
for the regression coefficient <0.05; Fig. 5b, c, Supplementary
Data 5a, b). Clusters with a higher density of expressed
GATA2R361C subclonal mutations exhibited higher expression

of genes involved in immune response, apoptosis, and leukocyte
adhesion29 (Fig. 5c, Supplementary Table 1). Notably, the gene
whose expression is most strikingly correlated with this subclone
is VIM, which encodes a type III intermediate filament and is an
established target of the GATA2/SPI1 (PU.1) transcriptional
circuit (Fig. 5d)31,32.

As described above, we also analyzed this sample using only
the cells of known (i.e. mutant) genotype, and again found that
GATA2R361C subclonal mutations were nonuniformly distributed
in expression space. We compared mutant-rich clusters (muta-
tion fraction >10%) to the remaining clusters using a Wilcoxon
rank sum test for differential expression33 (Fig. 5e–h). Consistent
with the above results, subclonal mutations were associated with
higher expression of VIM, CRIP1, AHNAK, CD74, and other
genes associated with immune response, apoptosis, and cell
adhesion (Supplementary Data 5c).

Many of the GATA2R361C subclone-associated genes are highly
correlated with each other (and with VIM), in the TCGA AML
gene expression data34. To quantify the overlap between TCGA
VIM-associated genes and GATA2R361C subclone-associated
genes, we identified 2191 genes that are highly correlated with
VIM in TCGA (q < 0.001, Pearson correlation, Benjamini-
Hochberg correction), and used a hypergeometric test to compare
them to the GATA2R361C subclone-associated genes (Fig. 5h).
The intersection of these gene sets was statistically significant
(p= 3.5 × 10–95, hypergeometric test), suggesting the existence of
a VIM “regulon” whose expression is influenced by one or more
mutations in the GATA2R361C subclone. To further characterize
this regulon, we examined the functional enrichment of the 198
genes in the intersection (Supplementary Table 2, Supplementary
Data 5d), and found that they are enriched for Gene Ontology
(GO) terms related to immune response (in particular, the Fc-
gamma receptor pathway), cytoskeletal organization, and focal
adhesion, and for genes that interact with WAS. WAS, which
encodes Wiscott-Aldrich Syndrome Protein, transduces signals
from the cell surface to the actin cytoskeleton in response to
infection, and is required for a variety of immunological cell
functions. WAS mutations are associated with a broad spectrum
of clinical manifestations, including immunodeficiencies and
hematologic malignancies35. Like VIM, WAS may also be
regulated by PU.136. Together with our data, this suggests that
a subset of PU.1 target genes coordinates immune function with
cytoskeletal reorganization in hematopoietic cells, and that at
least one of the mutations in the GATA2R361C subclone influences
the expression of these genes. Because GATA2 is a transcription
factor that negatively regulates PU.132, it is likely that the
GATA2R361C mutation itself is at least partly responsible for the
observed transcriptional effects in this sample. Furthermore,
GATA2 has well-documented roles in both immune function and
hematological malignancies: autosomal dominant mutations in
GATA2 can also lead to immunological disorders and hemato-
logic malignancies37,38.

The success of this method depends on a number of factors,
including steepness of the expression gradient and number of
mutant cells (the more subtle the expression signature, the more
mutant cells required). Moreover, irrelevant or hidden variables
can affect the distribution of mutant cells in expression space,
such as expression level of the mutated gene, cell cycle phase,
ribosomal transcript content, mitochondrial transcript content, or
other variables for which we could not account. We therefore
used an independent experimental approach to test for the
GATA2R361C-associated expression gradient, in which we com-
pared the frequency of GATA2R361C in genomic DNA from cells
drawn from each extreme of the expression gradient. First,
scRNA-seq was used to identify cell-surface markers whose
expression was correlated with the GATA2R361C mutation
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gradient. This analysis yielded CD99, a well-described cell-surface
marker associated with AML and MDS cells39 (Fig. 6a). Then,
peripheral blood and bone marrow samples from this patient
were stained with CD99 FITC-conjugated antibody, and flow
cytometry was used to isolate cells with high or low CD99
expression (top or bottom 15%, Fig. 6b, c; Methods). Genomic
DNA was prepared from each population, and targeted sequen-
cing was used to measure the frequency of GATA2R361 mutations
(as well as a control DNMT3AR882 mutation, which is found in all
AML cells in this sample) in each cell population. This
demonstrated that GATA2R361C is significantly more abundant
(p= 0.0081 (marrow), p= 0.0432 (peripheral blood), Fisher
Exact test) in the genomes of the CD99hi cells (Fig. 6d). The

control mutation, DNMT3AR882, was not significantly enriched in
the CD99hi cells, because it is present in all of the AML cells in
this sample (it was the initiating event). GATA2R361C abundance
varies more dramatically in the scRNA-seq data, possibly due to
allele-specific expression of the mutant allele, a documented
phenomenon in GATA2-mutated AML40. These results support
the conclusion that GATA2R361C is associated with a distinct gene
expression profile, and shows that SNV detection in scRNA-seq
data can be used to identify mutation-associated expression
signatures. Moreover, the ability to identify cell surface markers
for the purification and analysis of subclones is an important
application of scRNA-seq data that should have broad
applications.
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In case 508084, a mutation in RNF10, a putative transcription
factor of unknown function, was also restricted to a subset of
expression clusters (Fig. 7a, b). Compared to clusters with few or
no mutant cells, mutant-rich clusters displayed a clear expression
signature marked by high expression of genes involved in
immune-related cell adhesion. This included genes involved in
MHC Class II receptor activity and T cell aggregation, as well as
genes that interact with MCM2 (a regulator of TP53) and NPM
(which is frequently mutated in AML) (Fig. 7c, Supplemen-
tary Table 3, Supplementary Data 5e).

The remaining three cases showed more complex relationships
between expression and mutations. Based on the eWGS results,
809653 contained TP53E286G and CEBPAR142fs in the founding
clone, and a subclone defined by NRASG12D and NF1I679fs. In the
single-cell data, however, the distribution of CEBPAR142fs was
markedly nonuniform, suggesting that CEBPAR142fs may be in a
subclone (Fig. 7d, e); the clonal architecture of this case may be
more complicated than can be discerned from a single eWGS

sample. Notably, cells expressing CEBPAR142fs were restricted to
one AML cluster that differed from the other AML clusters with
respect to differentiation state and cell cycle status: compared to
CEBPA wild-type AML clusters, the CEBPA-mutant cluster was
enriched for cells in S-phase, and cells with progenitor-like
expression signatures. Differential expression analysis of the
CEBPA-mutant cluster showed that it overexpressed genes
associated with a variety of biological processes, most notably
ribosome biogenesis, which probably reflects the increased
protein synthesis requirements of rapidly proliferating cells
(Fig. 7f, Supplementary Table 4, Supplementary Data 5f). The
cluster also expressed a variety of key transcription factors
involved in myeloid differentiation, particularly targets of Myc,
consistent with the observed perturbation of cellular differentia-
tion in this cluster.

In 782328, NRASG12D and NRASG12S also display subtle
expression signatures (Fig. 4d). They are predominantly localized
to cells in the S, G2, and M phases of the cell cycle, suggesting a
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role for these mutations in cell cycle progression or proliferation
rate. Further work will be required to characterize and confirm
these putative mutation-expression associations.

Interaction between genetic and epigenetic heterogeneity. The
interplay between genetic and epigenetic heterogeneity could have
important consequences for intratumoral phenotypic hetero-
geneity: a mutation will likely have functional effects only in the
cells in which it is expressed. This phenomenon would manifest
in scRNA-seq data as a mutation that is confined to a portion of
expression space by virtue of the fact that the mutation-
containing gene is only expressed in that region; the converse is
not necessarily true, due to the potential for dropouts in scRNA-
seq data. In case 508084, we observed a subtle mutation gradient
for the FLT3-ITDmutation in case 508084, which was caused by a
corresponding FLT3 expression gradient. This phenomenon was
also observed in the CEBPAR142fs mutation gradient in 809653,
which was partly due to heterogeneous CEBPA expression.

Discussion
The ability to link genetic and transcriptomic information in
single cells has important implications for the study of hetero-
geneous cell populations. By combining eWGS and scRNA-seq
data from a high-throughput platform, we can distinguish
between tumor and non-tumor cells, identify tumor cells dis-
playing lineage infidelity, evaluate the differentiation state of
individual tumor samples, derive mutation-associated expression
signatures, study transcriptional heterogeneity within confirmed
tumor cells, and identify cell-surface markers that can be used to
isolate specific cells for downstream studies. Further, the
approach described here should be applicable–without additional
modifications or customization–to virtually any tumor type.

Previous studies have demonstrated that CNAs and specific
genetic variants, such as the BCR-ABL fusion, can be identified
with high sensitivity in full-length transcripts from dozens to
hundreds of single cells using plate-based techniques such as the
Fluidigm C1/Smartseq platform, and that SNVs can also be
identified, albeit with lower sensitivity, using that data. Because
CNAs rarely reflect the complete clonal architecture of a tumor
(and are rare in most AML samples), we were interested in
finding a way to identify SNVs in single cells. We noticed that the
10x Genomics Chromium Single Cell 3′ and 5′ Gene Expression
workflows yield unexpectedly high transcript coverage far from
the 3′ and 5′ ends of transcripts. Although this distal coverage is
sparse, it is sufficient for low-sensitivity variant detection in single
cells: SNVs were detectable in 22.7% of the cells in our samples,
on average. Coupled with the high throughput of the platform,
this sensitivity enables the detection of SNVs in hundreds to
thousands of cells per sample. Although these cells can be studied
in isolation, we analyzed them in the context of the entire sample,
thereby leveraging the expression information provided by the
additional, non-genotyped cells.

A common application of variant detection in scRNA-seq data
is to distinguish tumor from normal cells in heterogenous sam-
ples. However, because malignant cells can have expression
profiles that mimic more highly differentiated normal cells, gene
expression data alone is not sufficient to identify bona fide AML
cells. Moreover, AML cells sometimes display lineage infidelity,
where some AML cells display the characteristics of differentiated
cell types from other lineages, such as T-cells. These AML cells,
which would have been missed if classification had been per-
formed using expression signatures alone, can be identified when
mutation information is also considered.

Transcriptional heterogeneity in AML samples clearly arises
from multiple sources, including the differentiation states of
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normal and tumor cells, cell cycle states, mutations that are
present in subsets of cells (i.e. subclones), or non-genetic het-
erogeneity that arises as a consequence of stochastic gene
expression or other perturbations. Incorporating variant detec-
tion into scRNA-seq analysis helps to distinguish among these
sources by facilitating the distinction between tumor and normal
cells, and by revealing correlations between mutational and
transcriptional heterogeneity. Equally, importantly, it suggests
that genetic heterogeneity plays a limited role in establishing
transcriptional heterogeneity: we routinely observed expression
heterogeneity in the absence of detectable genetic heterogeneity.
In some cases, this may be due in part to the limited sensitivity of
mutation detection. In others, it may exemplify the well-
established phenomenon whereby stochastic gene expression
gives rise to phenotypic heterogeneity in clonal populations of
cells41–43. Non-genetic transcriptional heterogeneity can influ-
ence phenotype (such as drug sensitivity44,45, growth rate46, and
cell fate43) and persist across generations46–48, and might there-
fore serve as a substrate for natural selection49. This underscores
the idea that a combination of genetic and non-genetic sources of
heterogeneity may help to govern tumor biology and evolution.
As additional scRNA-seq studies of primary tumor samples are
undertaken by many groups, the relative contributions of these
sources of heterogeneity for each tumor type should become
more clear.

The detection of cells with expressed mutations in scRNA-seq
data is subject to several limitations. Dropout (including tran-
script dropout and allelic dropout) occurs with most scRNA-seq
platforms. As a result, it is impossible to determine whether a cell
is truly wild-type for a given mutation. In addition, dropout
reduces the sensitivity of mutation detection by a factor of two.
Partial transcript coverage is specific to end-biased platforms such
as the Chromium platform, and also limits the sensitivity of
variant detection. Moreover, coverage drops non-linearly across
the length of the transcript, so some variants are much more
easily detectable than others. The utility of this approach there-
fore depends on the specific mutational composition of the
sample in question, and will likely perform better for other tumor
types, almost all of which have higher mutation burdens
than AML.

A number of other approaches to identify expressed
mutations in single-cell RNA-sequencing data have been
described3–8,10–12,14,17–21. Each method has different
strengths and weaknesses that should influence the choice of
platform for a specific experimental question. Key variables
include library insert size, end-bias, and complexity, sequen-
cing depth and read length, dropout rate, and throughput.
Furthermore, technologies that enable simultaneous DNA and
RNA sequencing of single cells, such as G&T-seq50, may
become very powerful with increased throughput. The rapid
pace of technological advancement in this area will likely
increase the power of scRNA-seq to identify and distinguish
among different sources of transcriptional heterogeneity in
primary tumor samples.

Methods
Ethical approval and consent. Samples were obtained as part of a study that was
approved by the Human Research Protection Office at Washington University
School of Medicine (HRPO # 201011766). All the patients provided written
informed consent that permitted whole-genome sequencing, in accordance with a
protocol that was approved by the institutional review board at the Washington
University School of Medicine.

eWGS, germline SNP detection, and somatic variant detection. For each case,
we performed enhanced whole-genome sequencing (eWGS) on bone marrow and
matched normal tissue to identify germline and somatic variants. eWGS combines
whole-genome sequencing with targeted exon capture to yield high coverage

(~150×) of the exome, and lower genome-wide coverage in the tumor (~45×) and
normal (~25×) samples. Using a previously described protocol25, eWGS sequen-
cing libraries, including WGS libraries (350 bp inserts) and targeted libraries
(250 bp inserts), were constructed with a KAPA HTP kit on a SciClone instrument.
Targeted libraries were captured with the IDT exome reagent spiked with AML
recurrently mutated genes51 (~40Mb). These were sequenced on an Illumina
HiSeq4000, producing ~150X coverage of each enhanced region. Sequence data
were aligned to reference sequence build GRCh37-lite-build37 using BWA-MEM52

version 0.7.10 (params: -t 8), then merged and deduplicated using Picard version
1.113 (https://broadinstitute.github.io/picard/). Germline mutations were called
using GATK HaplotypeCaller v3.553 (parameters -stand_emit_conf 10 -stand_-
call_conf 30) and filtered using recommended parameters (–filterExpression “QD
< 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum <−12.5 || ReadPosRankSum <
−8.0”). SNVs were detected using an ensemble mutation calling approach54

that considers the union of four callers: (1) Samtools55 version r982 (params:
mpileup -BuDs) intersected with Somatic Sniper56 version 1.0.4 (params: -F vcf –G
-L -q 1 -Q 15) and processed through false-positive filter v1 (params:–bam-read-
count- version 0.4–bamreadcount-min-base-quality 15–min-mappingquality
40–min-somatic-score 40), (2) VarScan57 version 2.3.6 filtered by varscan-
highconfidence filter version v1 and processed through falsepositive filter v1
(params:–bamreadcount-version 0.4–bam-readcount-min-base-quality 15), (3)
Strelka58 version 1.0.11 (params: isSkipDepthFilters= 0), and (4) Mutect59 v1.1.4.
Indels were detected using the union of 3 callers: (1) GATK53 somatic-indel version
5336, (2) VarScan57 version 2.3.6 filtered by varscan-high-confidence- indel version
v1, and (3) Strelka5 version 1.0.11 (params: isSkipDepthFilters= 0). SNVs and
Indels were further filtered by removing artifacts found in a panel of 905 normal
exomes60, removing sites that exceeded 0.1% frequency in the 1000 genomes or
NHLBI exome sequencing projects, and then using a bayesian classifier (https://
github.com/genome/genome/blob/master/lib/perl/Genome/Model/Tools/
Validation/ IdentifyOutliers.pm) and retaining variants classified as somatic with a
binomial log-likelihood of at least 10. Copy number aberrations were detected
using copyCat version 1.6.10 (https://github.com/chrisamiller/copyCat) (default
parameters). Somatic structural variants were detected using Manta v0.2961.
Finally, GRCh37 genomic coordinates were translated into GRCh38 coordinates
using the “liftover” utility provided by the UCSC Genome Browser (http://genome.
ucsc.edu/)62. Sublconal architecture was inferred using the SciClone algorithm26.

Bulk RNA-sequencing. RNA libraries were prepared using the TruSeq stranded
kit, sequenced on the Illumina HiSeq platform, and aligned as described pre-
viously54. Expression quantification was performed using Kallisto 0.43.163 and
transcripts from ensembl version 74.

Flow sorting for live cells for scRNA-seq. Cryovials of AML cells were thawed as
follows: while 9 ml of Fetal Bovine Serum (FBS) was allowed to come to ~24 °C,
AML cryovials were removed from liquid nitrogen, and warmed in a 37 °C water
bath until the cells began to thaw. After 1 min, 1 ml of room temperature FBS was
added to the warming cryovial with a P1000 pipet tip and allowed to mix with
thawing cells. The freshly added FBS was removed from the cell pellet and
transferred back to the FBS stock. This process was repeated 3–4 times until all cells
from the cryovial could be poured directly into the FBS stock. The empty cryovial
was rinsed once more with the FBS mixture. Cells were then pelleted by cen-
trifugation at 300G for 5 min and resuspended in Phosphate-buffered saline (PBS)
at a concentration of 1 × 106 cell/ml in 1x PBS. Cells were then pipetted through a
70-µm filter into a 5-ml tube for sorting. Cells were then stained with 1 µl 7-AAD
per 1 ml of cells for 30 min at 4 °C. If cell viability was ≤85%, stained cells were
filtered through a 40-µM Flowmi cell strainer (Miltenyi), flow sorted, and gated
using the FACS Chorus software (BD Biosciences).

5-prime single-cell RNA library construction and sequencing. Cells were pro-
cessed using the 10x Genomics Chromium Controller and the Chromium Single
Cell 5′ Library & Gel Bead Kit (PN 1000006) following the standard manufacturer’s
protocols (https://tinyurl.com/y96l7lns). Two technical replicates were run in
parallel for each sample. In brief, between 14,000 and 21,000 live cells were loaded
onto the Chromium controller in an effort to recover between 10,000 and 15,000
cells for library preparation and sequencing. Gel beads were prepared according to
standard manufacturer’s protocols. Oil partitions of single-cell+ oligo coated gel
beads (GEMs) were captured and reverse transcription was performed, resulting in
cDNA tagged with a cell barcode and unique molecular index (UMI). Next, GEMs
were broken and cDNA was amplified and quantified using an Agilent Bioanalyzer
High Sensitivity chip (Agilent Technologies).

To prepare the final libraries, amplified cDNA was enzymatically fragmented,
end-repaired, and polyA tagged. Fragments were then size selected using SPRIselect
magnetic beads (Beckman Coulter). Next, Illumina sequencing adapters were
ligated to the size-selected fragments and cleaned up using SPRIselect magnetic
beads (Beckman Coulter). Finally, sample indices were selected and amplified,
followed by a double sided size selection using SPRIselect magnetic beads
(Beckman Coulter). Final library quality was assessed using an Agilent Bioanalyzer
High Sensitivity chip. Samples were then sequenced on the Illumina NovaSeq with
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a target of 150,000 reads/cell (2 × 150 paired end reads), yielding a median per-
library depth of 192,427 reads per cell.

Evaluating transcript coverage as a function of distance. Transcript alignment,
counting, and inter-library normalization were performed using the Cell Ranger
pipeline (10x Genomics, default settings, Version 2.1.1, GRCh38 reference)64. For
the genes TP53, NPM1, GATA2, and DNMT3A, the depth at each transcript was
evaluated using both scRNA-seq data as well as bulk RNA-seq data. For each gene,
a canonical isoform was chosen by consulting the APPRIS database65

(ENST00000445888.6, ENST00000296930.9, ENST00000341105.6, and
ENST00000264709.7 respectively). For the scRNA-seq data, the number of unique
barcode/UMI pairs was counted at each position. For the bulk RNA-seq data, the
tool bamCoverage66 was used to generate a wiggle file over the transcript at 1 bp
bin size. The resulting tracks were visualized using the UCSC Genome Browser67.
To reduce visual noise from intergenic reads, positions not overlapping the
canonical isoform were not considered. Coverage plots for all mutated genes in this
study are provided at https://github.com/genome/scrna_mutations.

To evaluate transcriptome-wide coverage, we used the annotation set
GENCODE V27 to extract 20,090 genes with only one annotated isoform between
250 bp and 11,000 bp, with an average size of 1569 bp and median size of 829 bp.
Restricting to single isoform genes reduced noise related to alternative transcription
start (TSS) and stop (TTS) sites. For each transcript in each sample in this study,
single-cell transcriptome-wide coverage was quantified by counting the number of
unique barcode/UMI pairs seen across the whole transcript. Then, for each position
along the transcript, the number of unique pairs was divided by this total. This
value was calculated as distance from the TSS for 5′ kit data, and distance from the
TTS for 3′ kit data. To plot the results, the average value across all transcripts for all
samples was calculated at each position. For shorter transcripts, positions with no
data were not included in the average. The plot was also truncated to 10,000 bp to
avoid edge effects related to the transcript selection process. Coverage plots were
generated using the Gviz68 and BiomaRt69 R packages, versions 1.22.3 and 2.34.2
respectively. For each locus, both coding and non-coding exonic nucleotides were
considered at a 1 bp bin size. Gene region tracks were retrieved directly from
Ensembl v93. scRNA total read coverage was generated using bamCoverage, part of
the deepTools package66, and scRNA cell barcode coverage can be found at https://
github.com/genome/scrna_mutations.

Copy number analysis. Gene expression matrices were analyzed with the CON-
ICSmat package for R19. The default filtering and normalization procedures were
followed, as outlined in https://goo.gl/tFYLEh. The mixture model results were
obtained, then restricted to regions of known copy number events from the eWGS
with the best log-likelihood scores from the modeling: For sample 809653, these
were chromosomes 1p and 7q. The z-scored posterior probabilities were clustered,
using k= 4, and cell barcodes from the three clusters containing one or more of the
expected events were gathered and visualized on the expression t-SNE projection.

Single-cell mutation identification and analysis. We processed the aligned
sequence data using a Pysam70-based tool (https://github.com/sridnona/
cb_sniffer). For each cell barcode in the filtered Cell Ranger barcode list, and each
somatic variant in the eWGS data, variant bases were identified, excluding exclude
those with base quality and mapping quality <1. Only reads that had both a
Chromium Cellular Barcode (CB) tag and a Chromium Molecular Barcode (UB)
tag were included. We then obtained the cell-associated tag for downstream ana-
lysis of UMIs. In rare cases where duplicate reads existed for a given UB and the
base at the mutant position was not identical across all reads, we selected the most
common base if it was present in at least 75% of the reads; otherwise all reads in the
group corresponding to that UB were discarded. We rarely observed such dis-
cordant reads (for example, they occurred in 782328 at a frequency of 4/6218, or
0.06%).

Several variants required additional steps in order to accurately identify mutant
cells: Manual review revealed that two small indels in repetitive regions (CEBPA
(19:33301989–33301990) and NPM1 (5:171410538–171410546)) were frequently
misaligned to several adjacent bases. This was resolved by parsing the bam cigar
string to identify reads containing insertions or deletions at the appropriate
locations using an additional Pysam-based tool (https://github.com/genome/
scrna_mutations/tree/master/misc_scripts), which extracts overlapping reads using
SAMtools ‘view’55. In addition, the large size of the characteristic large internal
tandem duplication (ITD) in FLT3 resulted in incorrect alignment of many
variant-containing reads. To address this, we created a contig containing the
variant sequence (±250 bp), appended it to the transcriptome reference, and
realigned the scRNA data to the expanded reference. Barcodes from reads uniquely
aligning to the mutant FLT3 sequence were then extracted. Similarly, the NUP98-
NSD1 fusion in 508084 was detected by appending the fusion transcript to the
input GTF file, then using kallisto63 and its companion tool, pizzly, to identify
fusion-supporting transcripts.

After using SciClone26 to assign each somatic variant to a subclone, we assigned
mutation-containing cells (“mutant cells”) to their corresponding subclones. Cell-
variant assignment can now also be performed in an automated manner using the
VarTrix tool (https://github.com/10xgenomics/vartrix).

Read-based and cell-based metrics. The read-based metric “single-cell Variant
Allele Frequency,” or scVAF, was defined for each variant discovered in the eWGS
data as the number of mutant reads divided by the total number of reads mapping
to the variant position in the scRNA-seq data. The two cell-based metrics were (1)
Mutant Cell Fraction (MCF) and (2) Mutant Cell Detection Rate (MCDR)). The
MCF for each variant was defined as M/T, where T is the number cells having
coverage at the mutant site, andM is the number of cells having at least one mutant
read at that site. The Mutant Cell Detection Rate (MCDR) was defined as the ratio
of observed mutant cells to the number of expected mutant cells; for variants with
coverage in bulk RNA-seq data, the number of expected mutant cells is twice the
eWGS VAF.

Mutation detection in normal bone marrow samples. We used cb_sniffer to
search four normal bone marrow samples for the somatic mutations discovered by
eWGS. These samples had been previously generated using the methods described
above and the Chromium Single Cell 3′ Library & Gel Bead Kit (v2).

scRNA-seq expression analysis and mutation integration. Transcript align-
ment, counting, and inter-library normalization were performed using the Cell
Ranger pipeline (10x Genomics, default settings, Version 2.1.1). Using the Seurat R
package33, cells that contained fewer than 10 expressed genes, more than 50%
ribosomal transcripts, or more than 10% mitochondrial transcripts were removed.
Genes that were expressed in fewer than three cells were also removed. For each
cell, expression of each gene was normalized to the sequencing depth of the cell,
scaled to a constant depth (10,000), and log-transformed. Variable genes were
selected (x.low.cutoff= 0.0125, x.high.cutoff= 5, y.cutoff= 0.5, default settings
otherwise). Principal component analysis was performed on the variable genes, and
the optimal number of principal components (PCs) for each sample was chosen
using a combination of elbow plots, jackstraw resampling, and PC expression
heatmaps (508084: 6, 548327: 8, 721214: 5, 782328: 7, 809653: 6, 809653 AML cells:
6). PCs were used for dimensionality reduction if they explained at least 2% of the
variance; were statistically significant according to jackstraw resampling; exhibited
consistent expression variation in heatmaps; and were not composed entirely of
ribosomal, mitochondrial, or immune genes. Dimensionality reduction and
visualization were performed with the t-SNE algorithm (Seurat implementation)
using the PCs selected above. Unsupervised graph-based clustering of cells was
performed using the indicated PCs, with resolution= 0.7. Cell cycle phase was
determined using methodology provided in Seurat, based on relative expression of
phase-specific genes6. The distribution of mutations on the t-SNE projection was
robust to filtering for mitochondrial and ribosomal transcripts, the number of PCs
used, the clustering resolution, and normalization for cell cycle phase. The muta-
tion distribution was also robust to the particular implementation of the t-SNE
algorithm, with the Seurat and Cell Ranger implementations giving consistent
results. To assess the relationship between mutation distribution and expression of
the mutated gene, we colored each cluster in each t-SNE plot according to the
expression-normalized mutant cell fraction (mutant cell fraction divided by the
average expression of the mutant gene in that cluster).

Mutation-expressing cells were analyzed in isolation using analogous methods,
with the exception that fewer PCs were required to capture the variability in the
data (508084: 4, 548327: 3, 721214: 6, 782328: 7, 809653: 6).

Expression heatmaps. An expression heatmap was generated for each sample by
selecting the top 10 genes in each of the top 20 PCs. To connect heterogeneity to
the graph-based clusters, and to examine relationships among clusters, we averaged
the expression of each gene within each cluster, and hierarchically clustered the
results. For the analogous analysis performed on mutant cells in isolation, we used
the top 20 genes from each of the top n PCs, where n was chosen separately for
each sample to minimize noise (508084: 4, 548327: 3, 721214: 6, 782328: 7,
809653: 6).

Lineage inference and AML cell identification. Cell-type inference was per-
formed in an unsupervised, marker-free manner by training a nearest-neighbor
algorithm on expression data from the DMAP database27, using Spearman cor-
relation as the distance metric. Using this approach, cells that co-cluster by graph-
based clustering tend to have the same inferred lineage and express the corre-
sponding cell-type markers (when known). In the case of AML cells, the assigned
lineage represents the normal lineage to which the AML cell is most tran-
scriptionally similar. To identify AML cells in highly heterogeneous samples
(549327 and 809653), a one-sided Fisher exact test was used to identify cell clusters
that were enriched for somatic mutations (p ≤ 0.05). In cases where most cells are
AML cells, normal cell clusters were identified using a one-sided Fisher exact test
for under-enrichment (p ≤ 0.05).

GATA2R361C-associated expression signatures. Each cell containing a
GATA2R361C mutation was assigned to an expression cluster. In order to incor-
porate expression information from all cells in the data set, including those of
undetermined genotype, and to make use of quantitative information about local
mutation density, we used a regression model to identify genes whose expression
depends on mutant cell concentration. For each gene i, multiple regression was
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used to quantify the relationship between mean expression (Ei) and GATA2R361C

mutant cell fraction (m) across the 12 AML clusters, while controlling for mean
cluster-wise GATA2 expression (g):

Ei ¼ xi þ yimþ zig ð2Þ
We selected genes whose q-value (F-test with Benjamini-Hochberg correction

for multiple hypotheses) for yi was at most 0.05. To consider the entire subclone
containing the GATA2 mutation, we performed this procedure using cells
containing any detected mutation in that subclone (GATA2R361C or
TIMM17BL122fs), without the correction for GATA2 expression. To analyze the
mutant-only data, we used a Wilcoxon test to perform a binary comparison of
mutation-rich clusters to mutation-poor clusters, with analogous p-value
correction and cutoffs.

Identification and analysis of the VIM regulon. Genes that exhibited subclone-
specific expression (above) were compared to genes whose expression was highly
VIM-correlated in TCGA (q < 0.001, Pearson correlation, Benjamini-Hochberg
correction for multiple hypotheses). Genes in the intersection were considered part
of the “VIM regulon,” and Toppfun29 was used to characterize their functional
enrichment.

Orthogonal confirmation of GATA2R361C signature. Primary, human AML
peripheral blood and bone marrow aspirate samples (721214) were thawed from
cryopreserved stocks and labeled with CD99 FITC-conjugated antibody (clone
3B2/TA8, ThermoFisher) in staining buffer (2% fetal bovine serum, 0.25 mM
EDTA in PBS) for 30 min at 4 °C followed by viability dye for 5 min at room
temperature (SytoxBlue, ThermoFisher). Live cells were analyzed using a Sony
SY3200 Synergy flow cytometer, gated for sorting on the top 15% and bottom 15%
with respect to CD99 expression, and collected for analysis. Genomic DNA was
prepared with the QIAmp DNA micro kit (Qiagen) according to the manu-
facturer’s protocol. Targeted sequencing was achieved by generating amplicons to
capture mutations at DNMT3AR882 (forward: CGCAAAATACTCCTTCAGCG,
reverse: TTTCTCCCCCAGGGTATTTG) and GATA2R361 (forward:
TGTGCAGCTTGTAGTAGAGG, reverse: TGAGATTTAGCCCTCCTTGAC).
Amplicons were indexed and spiked into 2x150 dual indexed runs on an Illumina
MiniSeq sequencer. FastQC71 was used for quality analysis of sequenced reads
(FASTQ files). Reads were checked for contamination, adapter sequences and base
quality, then aligned against human reference sequence (GRCh37) using bwa
(version 0.7.15)72. Varscan257 was used to identify SNVs and calculate variant
allele frequencies (VAF).

RNF10NULL and CEBPAR142fs mutant expression signatures. We used a Wil-
coxon rank sum test to perform a binary comparison of mutation-rich clusters to
mutation-poor AML cell clusters, with p-value correction and cutoffs as described
above. Mutation-rich clusters were significantly enriched for mutations (p=
0.00085 (CEBPAR142fs) and p= 0.0044 (RNF10NULL), Fisher Exact test).

Functional enrichment. Functional enrichment analyses were performed using
ToppFun (https://toppgene.cchmc.org/enrichment.jsp)29.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Enhanced whole-genome sequence (eWGS), bulk RNA-sequence, and single-cell RNA-
sequence (scRNA-seq) data generated during the current study are available in dbGaP
(https://www.ncbi.nlm.nih.gov/gap/) with the primary accession code phs000159. The
SRA IDs for this study are: SRR7904017, SRR7904018, SRR7904019, SRR7904020,
SRR7910353, SRR7910351, SRR7910349, SRR7904016, SRR7903979, SRR7825447,
SRR7825459, SRR7825446, SRR7825444, SRR7825491, SRR7825473, SRR7825453,
SRR7825466, SRR7825499, SRR7825482, and SRR7939318. Processed single-cell RNA-
seq and mutation data pertaining to AML samples and normal bone marrow are also
available [https://doi.org/10.5281/zenodo.3345981]. All the other data supporting the
findings of this study are available within the article and its supplementary information
files and from the corresponding author upon reasonable request. A reporting summary
for this article is available as a Supplementary Information file.

Code availability
Single-cell mutation identification was performed using Pysam-based tools available at
https://github.com/sridnona/cb_sniffer and https://github.com/genome/
scrna_mutations/tree/master/misc_scripts. A comparable tool provided by 10x Genomics
is available at https://github.com/10xgenomics/vartrix.
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